
Additional methods 
 
Live cell imaging of partially immobilized L. pyrrhocoris 
 
The live cell imaging was performed according to previously described method (1) with minor 
modifications. To prepare the agarose gel, 0.5 g low melting agrose (Gibco, Thermo Fisher Scientific, 
Waltham, USA) and 0.5 g electrophoresis-grade agarose (Invitrogen, Thermo Fisher Scientific) were 
mixed with 9 ml dH2O, heated in a microwave and then transferred to a water bath at 55°C. 90 ml 
SDM (Gibco, Thermo Fisher Scientific) and 10 ml heat-inactivated fetal calf serum (HyClone, GE 
Healthcare Life Sciences, Pittsburgh, USA) were added slowly to the melted agarose with constant, 
gentle mixing. The agarose mixture was immediately poured into 5cm petri dishes (4 ml each dish) 
and allowed to set at room temperature. The agarose plates were air dried in a tissue culture hood for 
10 min before use. Unused plates were stored at 4°C and brought to room temperature before use. 
200-300µl log phase L. pyrrhocoris culture was added to the plate and spread evenly on the surface. 
A ~1.5 cm × 1.5 cm gel slice was excised and inverted onto a 35mm µ-Dish with glass bottom (ibidi 
GmbH, Gräfelfing, Germany). The cells were thus trapped and partially immobilized between the 
agarose gel and the cover glass bottom.  
 
Time lapse imaging was conducted on an Axiovert inverted microscope (Carl Zeiss AG, Oberkochen, 
Germany) equipped with a 60× NA1.4 objective and a CoolSNAP HQ2 (Teledyne Photometrics, 
Tuscon, USA) camera. Differential interference contrast (DIC) images were acquired every 1 min for 4 
hours. Images were analyzed using measurement tools in ImageJ (NIH). Figures and Movie 1 were 
prepared using ImageJ and Photoshop (Adobe Inc., San Jose, USA).  
 
Mathematic modelling methods 
 
Flagellar length modelling was performed using custom scripts in Python (see below). Dataset from a 
total of 5 cells that underwent flagellar duplication and cell division during the 4-hour imaging period, 
were used for model training and testing. For both old and new flagella, flagellum length vs. time was 
plotted. After removing outliers and missing values (which can lead to false slope), best-fit models (R2 > 
95%) with smoothened curves were generated for each dataset. The approximate assembly and 
disassembly rate was calculated using differential method, and plotted against flagellar length.  
 
We first tried to simulate our dataset based on the well-established balance point model (2). Using 
GEKKO, a package in Python (Script A), we tried to find out the value of constants P and L in equation: 
dL/dt = P/L – Q, where L is flagellar length and dL/dt is the flagellar assembly rate. No positive values 
of P and Q could be obtained, suggesting that flagellar length regulation in L. pyrrhocoris does not 
follow the balance point model. We therefore focused on developing another model to account for our 
observations.   
 
Flagellum disassembly was modelled using data derived from the shortening phase of the old flagella; 
and flagellum assembly was modelled using data from the new flagella (as shown in Fig. 2B). After 
conversion to rate vs. length plots, best-fit models were developed between rate and length (R2 ≈ 100% 
for old flagella and R2 > 85% for new flagella) using linear regression (Script B). 
 
 
Script A 

import numpy as np 
from gekko import GEKKO 
import matplotlib.pyplot as plt 
import pandas as pd 
import math 
import scipy.stats as stats 
from sklearn.metrics import mean_squared_error, r2_score 
import xlsxwriter 
from sklearn import preprocessing 
# Importing the dataset 
dataset1 = pd.read_csv('c_a.csv') 
dataset = dataset1.dropna(subset=['A_rate']) 



xm = dataset.iloc[:, 2:3].values 
ym = dataset.iloc[:, 3].values 
 
# define GEKKO model 
m = GEKKO(remote=False) 
# parameters and variables 
a = m.FV(value=0) 
b = m.FV(value=0) 
c = m.FV(value=0,lb=-100,ub=100) 
x = m.Param(value=xm) 
ymeas = m.Param(value=ym) 
ypred = m.Var() 
# parameter and variable options 
a.STATUS = 1 # available to optimizer 
b.STATUS = 1 #  to minimize objective 
c.STATUS = 1 
# equation 
m.Equation(ypred == b*26.3 - b*x) 
# objective 
m.Obj((ypred-ymeas)**2/len(ymeas)) 
# application options 
m.options.IMODE = 2   # regression mode 
# solve 
m.solve() # remote=False for local solve 
#m.open_folder() 
# show final objective 
print('Final SSE Objective: ' + str(m.options.objfcnval)) 
 
# print solution 
print('Solution') 
print('a = ' + str(a.value[0])) 
print('b = ' + str(b.value[0])) 
print('c = ' + str(c.value[0])) 
 

Script B 

# Importing the libraries 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
import math 
import scipy.stats as stats 
from sklearn.metrics import mean_squared_error, r2_score 
import xlsxwriter 
from sklearn import preprocessing 
# Importing the dataset 
dataset = pd.read_csv('c_a.csv') 
#dataset = dataset1.dropna(subset=['A_rate']) 
X = dataset.iloc[:, 0:1].values 
y = dataset.iloc[:, 1].values 
 
# Fitting Polynomial Regression to the dataset 
from sklearn.linear_model import LinearRegression 
from sklearn.preprocessing import PolynomialFeatures  
poly_reg = PolynomialFeatures(degree = 2) 
X_poly = poly_reg.fit_transform(X) 
poly_reg.fit(X, y) 
lin_reg_2 = LinearRegression() 
lin_reg_2.fit(X_poly, y) 



y_predicted = lin_reg_2.predict(poly_reg.fit_transform(X)) 
 
#Printing the equation 
coefficient = lin_reg_2.coef_ 
intercept = lin_reg_2.intercept_ 
print("Equation is:") 
print("y = ", end='') 
print(intercept,"+ ",end='') 
for i in range(1,len(coefficient)): 
    print(coefficient[i],"x^",end='') 
    print(i,end=' ') 
    if i == len(coefficient)-1: 
        break 
    else: 
        print('+',end=' ') 
 
# evaluating the model on test dataset 
rmse_dataset = np.sqrt(mean_squared_error(y, y_predicted)) 
r2_dataset = r2_score(y, y_predicted) 
#Printing RMSE and R2 score 
print("\nThe model performance for the given data set") 
print("RMSE is {}".format(rmse_dataset)) 
print("R2 score is {}".format(r2_dataset)) 
 
#Visualizing the data and model 
plt.scatter(X, y, color = 'red', s=4, label = 'bx') 
plt.plot(X, y_predicted, color = 'blue', label = 'ro') 
plt.xlabel('time (in minutes)') 
plt.ylabel('length (in μm)') 
plt.legend(['Predicted','Measured'],loc='best') 
plt.savefig("NewLenvstime/cellc.png", dpi=200, bbox_inches='tight') 
plt.show() 
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